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In the presence of scalar (J) and residual dipolar (D) couplings,
the transfer efficiency of homonuclear Hartmann–Hahn and COSY-
type mixing depends on the ratio D/J and on the mixing sequence.
This dependence is analyzed theoretically and the results are con-
firmed experimentally. At least two different mixing sequences
are required to yield good transfer efficiencies for all ratios D/J.
In contrast to COSY-type experiments, homonuclear Hartmann–
Hahn sequences can provide efficient transfer even if the sum of
D and J is zero, i.e., if the coupling vanishes in the weak coupling
limit. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Residual dipolar couplings yield valuable structural informa-
tion in high-resolution NMR (1–5). Homonuclear Hartmann–
Hahn (TOCSY) transfer (6–8) through residual dipolar cou-
plings (dipolar mixing) and through J couplings (isotropic
mixing) have many common features (4, 8, 9). However, the
specific forms of isotropic and dipolar coupling tensors give
rise to very different transfer dynamics (4, 8, 10, 11). In addi-
tion, the distinct transformation properties under rotations can
result in very different scaling properties of isotropic and dipo-
lar coupling tensors under the same multiple pulse sequence
(9, 12). This also leads to a distinct offset dependence of the
transfer efficiency (9). Modified phase-cycled Carr–Purcell-type
(MOCCA) multiple-pulse sequences have been developed (13)
that make it possible to achieve considerably improved dipo-
lar scaling factors compared to DIPSI-2 (14), MLEV-16 (15),
or MLEV-17 (7). Here we present a systematic study of the
transfer efficiency of important experimental building blocks if
scalar (J ) and residual dipolar (D) couplings are superimposed.
For commonly used mixing sequences, dramatic differences are
found in the transfer efficiency as a function of D/J . This per-
haps surprising behavior can be rationalized and simple rules
will be presented to predict the transfer efficiency of a given
pulse-sequence element. In practice, these rules make it pos-
1 To whom correspondence should be addressed.
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sible to choose the most suitable pulse sequences for a given
application.

THEORY

We consider a system of two coupled homonuclear spins 1/2
with the free evolution Hamiltonian

�0 = �off + �J + �D [1]

with the offset term

�off = 2πν1 I1z + 2πν2 I2z, [2]

the scalar coupling term

�J = 2π J (I1z I2z + I1x I2x + I1y I2y), [3]

and the residual dipolar coupling term

�D = 2π D

(
I1z I2z − 1

2
I1x I2x − 1

2
I1y I2y

)
. [4]

Here, the residual dipolar coupling constant is given by

Dkl = −S
µ0γ

2h

8π2r3
kl

{
Aa(3 cos2 θ − 1) + 3

2
Ar (sin2 θ cos 2φ)

}
,

[5]

where S is a generalized order parameter, γ is the gyromag-
netic ratio, rkl is the internuclear distance, and Aa and Ar are
the axial and rhombic components of the molecular alignment
tensor, in whose principal axis system the bond vector is defined
by the cylindrical coordinates θ and φ. This definition of �D

is consistent with the most widely used convention (see, e.g.,
(16, 17)) but differs (in magnitude and/or sign) from the defini-
tion of the residual dipolar coupling constant in other texts (see,
e.g., (9, 11, 13, 18)). During a multiple pulse sequence with radio
frequency (rf) amplitude νrf (t) and phase ϕ(t), the Hamiltonian
1090-7807/02 $35.00
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is given by �0 + �rf (t) with the rf term

�rf (t) = 2πνrf (t){(I1x + I2x ) cos ϕ(t) + (I1y + I2y) sin ϕ(t)}.
[6]

The evolution of the density operator is governed by the
Liouville–von Neuman equation (19), which can always be
solved numerically, using NMR simulation programs such as
SIMONE (20).

However, in order to better understand the properties of
dipolar mixing experiments, an analysis based on average
Hamiltonian theory (8, 19, 21) is very helpful. In the effec-
tive Hamiltonian created by Hartmann–Hahn-type mixing se-
quences, the offset term �off must be suppressed and the trans-
fer of coherence and polarization is governed by the form of the
effective coupling term (8)

�eff
C = �eff

J + �eff
D = 2π I1CeffI2. [7]

In the toggling frame defined by the action of �off + �rf (t),
the elements C̄ i j

αβ of the zero-order term C̄ of the effective cou-
pling tensor Ceff are given by (8, 9)

C̄ i j
αβ = 1

τc

τc∫
0

(
(J + D)ai

zα(t)a j
zβ(t) +

(
J − D

2

)
ai

xα(t)a j
xβ(t)

+
(

J − D

2

)
ai

yα(t)a j
yβ(t)

)
dt, [8]

where α, β = x, y, or z and τc is the cycle time of the multiple
pulse sequence. The coefficients ai

αβ and a j
αβ are the elements

of a real, three-dimensional rotation matrix, which transforms
the spin operators Iiα and I jβ in the toggling frame (8, 9). For
offsets that are small compared to the rf field, the analysis can
be considerably simplified. In this limit, all rotations are non-
selective, leaving the isotropic coupling term �J invariant (8);
i.e., �̄J = �J , and only the form of the dipolar coupling term is
modified in the average Hamiltonian.

In many cases of practical interest, the form of the dipolar
coupling tensor is conserved in the average Hamiltonian, except
for a scaled average dipolar coupling constant D̄ and a relabeling
of the coordinate axes:

�̄D = 2π D̄

(
I1z′ I2z′ − 1

2
I1x ′ I2x ′ − 1

2
I1y′ I2y′

)
. [9]

For example, for DIPSI-2 (14), �̄D = 2π D(−1/2I1x I2x +

1/4I1y I2y + 1/4I1z I2z) (12) which can be expressed in the form
of Eq. [9] with D̄ = −D/2 and the principal axis z′ = x . In
D GLASER

TABLE 1
Maximum On-Resonance Dipolar Scaling Factors sD , “Blind

Spots” (D/J)0
P,L, and Principal Axis z′ of the Effective Dipolar

Coupling Tensor for Characteristic Hartmann–Hahn-Type Mixing
Sequences

Sequence sD (D/J )0
P (D/J )0

L z′

DIPSI-2 −0.5 −4 2 x
MOCCA-XY16, MOCCA-M16 1 2 −1 z
Clean MLEV-17 0.5 4 −2 y
MLEV-16, MLEV-17 0.25 8 −4 y

Note. The following mixing sequences (and standard phases) are assumed:
DIPSI-2 (with phases x , −x , −x , x) (14), MOCCA-XY16 (9), MOCCA-M16
(9), Clean MLEV-17 (22), MLEV-16 (15), and MLEV-17 (where the composite
180◦ pulse is given by 90◦

x , 180◦
y , 90◦

x and the “17th” pulse is 60◦
y ) (7).

Table 1, the dipolar scaling factors

sD = D̄/D [10]

and the principal axes z′ are summarized for the mixing se-
quences DIPSI-2 (14), MOCCA-XY16 (13), Clean MLEV-17
(22), MLEV-16 (15), and MLEV-17 (7). In the limit of hard
pulses, the MOCCA-M16 sequence (13) also creates an aver-
age dipolar coupling tensor of the form of Eq. [9] with the same
dipolar scaling factor sD = 1 and the same principal axis system
as the MOCCA-XY16 sequence. Note that the dipolar scaling
factor of the MOCCA sequences is up to a factor of 4 larger
compared to commonly used TOCSY mixing sequences, such
as MLEV-17, resulting in a corresponding increase of the trans-
fer rates for purely dipolar coupled spins. It is also interesting
to note that for Clean MLEV-17 the dipolar scaling factor is a
factor of 2 larger than for MLEV-17.

If both isotropic and dipolar couplings are present, the zero-
order effective coupling term has the form

�̄C = �̄J + �̄D = 2π{C L I1z′ I2z′+ C P (I1x ′ I2x ′+ I1y′ I2y′ )} [11]

with the effective longitudinal and planar coupling constants

C L = J + D̄ = J + sD · D [12]

and

C P = J − 1

2
D̄ = J − sD · D/2. [13]

If �̄C has the form of Eq. [11], it is called a cylindrical mixing
′ ′ ′
Hamiltonian (18, 23) in the principal axis system (x , y , z )

of the effective coupling tensor, where all polarization transfer
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functions are defined (8) as

Tα′ = Tr{e−i�̄C τ I1α′ei�̄C τ I2α′ }
Tr{I2α′ I2α′ } .

For two coupled spins, longitudinal and transverse transfer func-
tions Tz′ and Tx ′ = Ty′ under cylindrical mixing conditions are
given by (8, 18, 23)

Tz′ = sin2(πC Pτ ) [14]

and

Tx ′ = Ty′ = sin(πC Pτ ) sin(πC Lτ ). [15]

Note that both the longitudinal and transverse transfer functions
vanish for C P = 0, which is the case if the ratio of residual
dipolar and scalar coupling constants is given by

(D/J )0
P = 2/sD. [16]

The transverse transfer functions also vanish for C P = 0 (i.e.,
for (D/J )0

P = 2/sD) and in addition for C L = 0, which is found
for

(D/J )0
L = −1/sD. [17]

The values of (D/J )0
P and (D/J )0

L are summarized in Table 1
for DIPSI-2, MOCCA-XY16, MOCCA-M16, Clean MLEV-17,
MLEV-16, and MLEV-17.

The transfer efficiency depends on the transfer amplitude as
well as on the transfer time. In practice, transfer functions are
dampened by relaxation. Here, we use the following definition
of the transfer efficiency η:

ηα = max
τ>0

{|Tα(τ )| exp(−τ/τdamp)}. [18]

In the following calculations, the time constant τdamp of the
exponential damping factor is chosen to be

τdamp = 1/|J | [19]

for simplicity (8, 24). However, in practical applications the sit-
uation is more complicated and effective relaxation rates (8)
must be taken into account for a detailed comparison of pulse
sequences. Fig. 1 shows the dampened longitudinal and trans-
verse transfer functions Tz′ and Tx ′ as a function for D/J for
characteristic mixing sequences listed in Table 1.

For comparison, we also consider transfer functions for a
COSY-type mixing step based on pulse-interrupted delays.

These experiments can in general be described in the weak
coupling limit, where the coupling term �C = �J + �D
IPOLAR MIXING 85

simplifies to

�weak
C = 2π (J + D)I1z I2z . [20]

Hence, for such experiments the coupling vanishes completely
for J + D = 0, which corresponds to the ratio

(D/J )0, COSY
L = −1 [21]

where no COSY-type transfer is possible.
Although in COSY experiments the actual transfer mech-

anism is antiphase to antiphase, the excited magnetization is
inphase and also only inphase magnetization is directly ob-
servable. Hence, for comparison, we consider the sequence
(τ/4) − (π )x − (τ/4) − (π/2)x − (τ/4) − (π )x − (τ/4) (rep-
resenting a homonuclear version of refocused INEPT transfer
(25)) as a representative of in-phase transfer based on pulse-
interrupted free precession sequences, which has the following
overall transfer function for x magnetization

T COSY
x = sin2(π (J + D)τ/2). [22]

The transfer efficiency of longitudinal (z′) Hartmann–Hahn
transfer and transverse (x) COSY-type transfer is shown in
Fig. 2A, and the transfer efficiency of transverse (x ′) Hartmann–
Hahn transfer is shown in Fig. 2B. As expected, for D/J = 0 all
Hartmann–Hahn-type experiments have identical transfer func-
tions and hence identical transfer efficiencies η, which corre-
spond to the case of isotropic mixing. However, for D/J �= 0,
the different mixing sequences have markedly different transfer
efficiencies. Each sequence has at least one “blind spot” and
none of these experiments can yield efficient transfer for all
ratios of D/J . The minima of the transfer efficiencies η as a
function of D/J are given by Eqs. [16], [17], and [21]. A min-
imum of two experiments (e.g., a longitudinal MOCCA-type
and a COSY-type experiment) are required to yield efficient po-
larization transfer for all possible ratios of D/J . As transverse
Hartmann–Hahn-type transfer has not only one but two “blind
spots” (see Fig. 2B and Eqs. [16], [17]), the transfer of x ′ or y′

coherence is unfavorable if the relative size of D and J varies in
a given application, such as in HN –Hα correlations in peptides
and proteins (26).

EXPERIMENTAL

In order to test the theoretical predictions, experimental co-
herence and polarization transfer functions between H5 and H6
of cytosine were acquired in isotropic and anisotropic solutions.
Four samples were prepared with phage (PF1-LP11-92, ASLA
Ltd., Latvia) concentrations between 0 and 50 mg/ml. The var-
ious sample conditions (pH) and the residual quadrupolar split-

ting of the D2O signal are summarized in Table 2. In addition,
the experimentally determined isotropic (J ) and dipolar (D)
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FIG. 1. Dampened longitudinal (A–D) and transverse (A′–D′) transfer functions Tz′ and Tx ′ as a function of D/J for the Hartmann–Hahn-type mixing
sequences DIPSI-2 (A, A′), MOCCA-XY16 (B, B′), Clean MLEV-17 (C, C′), MLEV-16 (D, D′) (see Table 1). The transfer functions were simulated using the
program SIMONE (20) where the effects of rf inhomogeneity were considered by assuming a Gaussian rf inhomogeneity distribution with a full width of 10% at
half height. A scalar coupling constant of J = 6 Hz was assumed in the simulations. The simulated transfer functions were multiplied by the damping function
−τ/τ
e damp with τdamp = 1/J = 166 ms (cf. Eq. [19]). Black and white lines represent positive and negative contours, respectively. Contour lines are shown for ±0.1,

±0.2, . . . , ±0.9. Areas with the same absolute value of the transfer amplitudes Tα′ are filled by the same gray level (e.g., black for |Tα′ | ≤ 0.1).
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FIG. 2. Transfer efficiency ηinh
α′ (cf. Eq. [18]) of (A) polarization (z′) and

(B) coherence (x ′) transfer under the following Hartmann–Hahn-type mixing
sequences: DIPSI-2 (– - -), MOCCA-XY16 (—), Clean MLEV-17 (– –), and
MLEV-16 (– - – -) (see Table 1). The transfer efficiency ηinh

α′ (Eq. [18]) was
determined based on the simulated transfer functions shown in Fig. 1. In addition,
the theoretical transfer efficiency of COSY-type experiments (- -) is shown in
(A) based on the analytical transfer function T COSY

x given in Eq. [22].

coupling constants, the observed splittings of the doublets
(J + D) and the ratios D/J are summarized in Table 2. The ex-
perimentally observed doublet of the H6 resonance with splitting
J + D is shown in Fig. 3 for the four samples.

TABLE 2
Experimental Parameters of the Prepared Samples of Cytosine

Phage conc. Q(D2O) J D J + D D/J
Sample [mg/ml] pH [Hz] [Hz] [Hz] [Hz] [Hz]

1 − 14 0 6.0 0 6.0 0
2 ∼5 6.5 7.9 7.2 −6.4 0.8 −0.89
3 ∼20 7 30.4 7.2 −23.7 −16.5 −3.29
4 ∼45 7.5 60.1 7.2 −44.7 −37.5 −6.21
Note. In samples 2–4, J was measured in isotropic solution at the correspond-
ing pH.
POLAR MIXING 87

FIG. 3. H6 resonance of cytosine in the four sample preparations (see
Table 2) with doublet splittings of (A) J + D = 6 Hz, (B) J + D = 0.8 Hz
(unresolved), (C) J + D = −16.5 Hz, and (D) J + D = −37.5 Hz.

In Figs. 4 and 5, experimental longitudinal and transverse
transfer functions between H5 and H6 are shown for DIPSI-2
(14), MOCCA-XY16 (13), MOCCA-M16 (13), Clean MLEV-
17 (22), MLEV-16 (15), and MLEV-17 (7). In the preparation
period of these experiments, the H6 resonance was selectively
saturated using CW irradiation and a series of one-dimensional
experiments with Hartmann–Hahn mixing periods τ between
0 and 200 ms was acquired (10). In Figs. 4 and 5, the experi-
mental transfer functions are represented by black dots, which
correspond to the integrated intensity of the H6 signal as a func-
tion of the mixing time τ .

For comparison, simulated transfer functions are also shown
in Figs. 4 and 5 (solid lines). These simulations were made using
an extended version of the program SIMONE (20). In the simula-
tions, the experimentally determined coupling constants, offsets
(v1 = 460 Hz and v2 = −460 Hz for the anisotropic samples near

pH 7, v1 = 560 Hz and v2 = −560 Hz for the isotropic sample
at pH 14), and the parameters (see Table 3) of the experimental
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FIG. 4. Simulated (—) and experimental (�) longitudinal transfer functions Tz′ for DIPSI-2 (A–A′′′), MOCCA-XY16, (B–B′′′), Clean MLEV-17 (C–C′′′), and

′′′ ′ able 3 for experimental details). Panels (A–D), (A′–D′), (A′′– D′′), and (A′′′–D′′′)

Ta

MLEV-17 (D–D ) for z transfer between H5 and H6 of cytosine (see text and T
correspond to the values of J and D in Samples 1, 2, 3, and 4, respectively (see

mixing sequences with approximately identical rf power (corre-
sponding to root mean square rf amplitude νrms

rf ≈ 5 kHz) were
taken into account. In addition, the effects of rf inhomogeneity
were considered, assuming a Gaussian rf inhomogeneity distri-
bution with a full width of 10% at half height (8). A reasonable
match is found between experimental and simulated transfer
functions. The remaining discrepancies are mainly attributed to

TABLE 3
Experimental Pulse Sequence Parameters

Sequence νrf [kHz] τ180◦ [µs] � [µs] νrms
rf [kHz]

DIPSI-2 5 100 — 5
MOCCA-XY16, 15.2 33 264 5.1

MOCCA-M16

Clean MLEV-17 7.1 70.71 35.36 5.8
MLEV-16, MLEV-17 5 100 — 5
ble 2).

inhomogeneous distribution of residual dipolar couplings in the
sample.

The experimental and simulated transfer functions also match
well with the results of our simplified theoretical analysis in
the previous section, which assumed that both spins are on-
resonance. As expected, all curves are approximately identi-
cal for sample 1 (Figs. 4A–4D and 5A–5C), where D = 0 and
Tx ′ = Ty′ = Tz′ (cf. Eqs. [14] and [15]) with C P = C L = J . Here,
the optimal transfer is found near 1/(2J ) ≈ 80 ms. However,
for oriented samples with D �= 0, the transfer functions depend
strongly on the size of the residual dipolar coupling constant D,
the mixing sequence and the type of transfer (longitudinal or
transverse).

As expected (cf. Eq. [14]), in Fig. 4, the simulated and exper-
imental longitudinal transfer functions Tz′ are all positive and
the first maximum is found near |1/(2C P )| = |1/(2J − sD D)|

(cf. Eq. [13]). Based on Figs. 1A–1D and Fig. 2A, the most ef-
ficient polarization transfer for the oriented samples of cytosine
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FIG. 5. Simulated (—) and experimental (�) transverse transfer functions Tx ′ for DIPSI-2 (A–A′′′), MOCCA-M16 (B–B′′′), and MLEV-16 (C–C′′′) for x ′
′ ′ ′′ ′′ ′′′ ′′′
transfer between H5 and H6 of cytosine (see text Table 3 for experimental details). Panels (A–C), (A –C ), (A –C ) and (A –C ) correspond to the values of J

and D in Samples 1, 2, 3, and 4, respectively (see Table 2).
with D/J < 0 is expected for the MOCCA-XY16 sequence
(Figs. 4B′–4B′′′), followed by Clean MLEV-17 (Figs. 4C′–4C′′′),
MLEV-17 (Figs. 4D′−4D′′′), and DIPSI-2 (Figs. 4A′–4A′′′).
In fact, the fastest longitudinal transfer is found in Fig. 4B′′′

for the MOCCA-XY16 sequence, where with J = 7.2 Hz,
D = −44.7 Hz (cf. Table 2, sample 4) and an ideal scaling factor
sD = 1 (cf. Table 1) the first maximum would be expected at a
mixing time τ = |1/(2C P )| = 17 ms. For a realistic scaling factor
(13) of sD ≈ 0.8, which corresponds to the experimental offsets
and pulse sequence parameters (cf. Table 3), complete transfer is
expected at τ = |1/(2C P )| ≈ 20 ms, which closely matches the
results of the simulated and experimental transfer functions in
Fig. 4B′′′. Note that in the same sample (sample 4), the transfer
time is more than six times longer for the DIPSI-2 sequence with
sD ≈ −0.5 (cf. Table 1), where the first maximum is found near
|1/(2C P )| = 125 ms (cf. Fig. 4A′′′). In Fig. 4, the most inefficient
polarization transfer is effected by DIPSI-2 in sample 3, where
with J = 7.2 Hz, D = −23.7 Hz (cf. Table 2), and sD = −0.5
the first maximum of the transfer function is expected only for
a mixing time τ = |1/(2C P )| ≈ 400 ms. Again, this is in full
agreement with the theoretical predictions of Figs. 1A–1D and 2,
because in sample 3 the ratio D/J = −3.29 is close to the “blind

0
spot” for polarization transfer of DIPSI-2 at (D/J )P = −4
(cf. Table 1).
For the case of transverse transfer (Fig. 5), the transfer func-
tions Tx ′ (cf. Eq. [15]) can be positive or negative. In addition
to the “blind spots” of the sequences at (D/J )0

P , the transverse
transfer also vanishes at (D/J )0

L . For example, in sample 3 the
ratio D/J = −3.29 is close not only to (D/J )0

P,DIPSI-2 = −4
but also to (D/J )0

L ,MLEV-16 = − 4, resulting in poor transfer ef-
ficiency in Figs. 5A′′ and 5C′′. Conversely, in sample 2 the ratio
D/J = −0.89 is close to (D/J )0

L ,MOCCA-M16 = −1, resulting in
poor transfer efficiency in Fig. 5B′. Again, as expected from the
results of Figs. 1A′–1D′ and Fig. 2B, the most efficient transfer
is found in sample 4 for the MOCCA-M16 sequence, where al-
most complete transfer (with inverted sign) is found for a mixing
time of only 15 ms (cf. Fig. 5B ′′′).

In order to demonstrate the complementary transfer proper-
ties of COSY- and TOCSY-type experiments (see Fig. 2A), two-
dimensional spectra were acquired for sample 2, where D ≈ −J
(see Table 2). The splitting J + D = 0.8 Hertz is smaller than
the line width and results in DQF-COSY cross peaks with low
amplitudes because of mutual cancellation of the antiphase com-
ponents of the cross-peak multiplet (see Fig. 6A). However, even
if the doublet splitting is unresolved, efficient polarization trans-
fer is possible in MOCCA-type experiments, where the full av-

¯
erage coupling term �C (Eq. [11]) is active. In Fig. 6B, the
corresponding cross peak is shown in a Hartmann–Hahn-type
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FIG. 6. Comparison of H5-H6 cross peak intensities in two-dimensional
DQF-COSY (A) and MOCCA-XY16 (B) spectra of cytosine (sample 2, see
Table 2) with J = 7.2 Hz and D = −6.4 Hz, where the doublet splitting J +
D = 0.8 Hz is not resolved in the inphase multiplet (see Fig. 3B). The mixing
time of the MOCCA-XY16 sequence was τ = 55 ms.

experiment with a MOCCA-XY16 mixing sequence, where op-
timal polarization transfer (Tz′ = Tz) is found for a mixing
period τ of 55 ms (cf. Fig. 4B′). As expected from Fig. 2A, a
large gain in cross-peak amplitude is found for the MOCCA-
XY16 experiment compared to the COSY-type experiments
for D/J ≈ (D/J )0

L ,COSY = −1 (cf. Eq. [21]) where �weak
C = 0

(Eq. [20]). Conversely, COSY-type experiments would have
significantly more intense cross peaks compared to MOCCA-
type experiments for D/J ≈ (D/J )0

P,MOCCA = 2/sD ≈ 2 (cf.
Eq. [13]), where the effective planar coupling constant C P

(cf. Eq. [13]) vanishes. However, with the prepared cytosine
samples only positive D/J ratios were experimentally accessi-
ble (cf. Table 1).

CONCLUSION

The theoretical results derived in this paper form the basis for
a rational choice of the mixing sequences in two-dimensional
correlation experiments of spins that are connected through
both scalar and residual dipolar couplings. In all experiments,
the transfer efficiency is zero for at least one ratio D/J . In
Hartmann–Hahn-type experiments, only one such “blind spot”
is found for the transfer of polarization (z′ magnetization; see
Table 1), whereas for the transfer of coherence (x ′ and y′ mag-
netization) two such “blind spots” exist. Hence, in this respect,
the transfer of polarization is preferable to the transfer of coher-
ence. The position of the “blind spots” (i.e., the ratio D/J for
which the efficiency of polarization transfer is zero) depends on

the dipolar scaling factor sD (cf. Eqs. [16] and [17]) and hence
on the dipolar mixing sequence (see Table 1).
GLASER

In experiments where the relative size of D and J varies,
such as in HN − Hα correlations (31), two complementary ex-
periments should be acquired in order to yield efficient trans-
fer for all possible ratios D/J (see Fig. 2A). A MOCCA-type
Hartmann–Hahn experiment and a COSY-type experiment form
an almost ideal combination with complementary “blind spots”
and favorable transfer characteristics (see Fig. 2). It is also im-
portant to note that coherence and polarization transfer functions
are sensitive to the relative sign of J and D (see, e.g., Fig. 1),
which may form the basis of a new approach to determine the
sign of residual dipolar coupling constants. For homonuclear
coupling networks consisting of more than two spins, the trans-
fer functions are more complicated. However, for the case of
three coupled spins 1/2, analytical longitudinal and transverse
transfer functions are known for cylindrical mixing conditions
(18). These analytical transfer functions are directly applicable
if the principal axis z′ (see Table 1) of the effective coupling
tensor and the effective longitudinal and planar coupling con-
stants C L = J + sD D and C P = J − sD D/2 (Eqs. [12], [13])
are taken into account for a given multiple-pulse sequence.
However, even for complicated coupling networks, the sim-
ple and efficient transfer dynamics of isolated two-spin sys-
tems can often be recovered in tailored correlation spectroscopy
(TACSY) by using selective Hartmann–Hahn-type experi-
ments (8, 27).
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